Radical scavenging reaction kinetics with multiwalled carbon nanotubes
نویسندگان
چکیده
منابع مشابه
Multiwalled carbon nanotubes with chemically grafted polyetherimides.
Covalent attachment of a non-fluorinated polyetherimide onto the surface of carboxylic acid-functionalized multiwalled carbon nanotubes (MWNTs) has been achieved via grafting reactions. This confirms for the first time that the grafting reaction occurs at the nanotube surface when the carboxylic acid-functionalized MWNTs react with the polyetherimide with amine-terminated groups, through both a...
متن کاملMultiwalled Carbon Nanotubes: Environmental Application
The high external surface area leads to a significant increase in the surface contact between the gaseous or liquid reactants and the active phase supported on this nanostructured host which is a prerequisite for its use as catalyst support, especially in liquid phase medium where diffusion rate is predominant [2]. Also, the strong interactions between the exposed prismatic planes and the depos...
متن کاملLithiation-induced embrittlement of multiwalled carbon nanotubes.
Lithiation of individual multiwalled carbon nanotubes (MWCNTs) was conducted in situ inside a transmission electron microscope. Upon lithiation, the intertube spacing increased from 3.4 to 3.6 Å, corresponding to about 5.9% radial and circumferential expansions and ∼50 GPa tensile hoop stress on the outermost tube wall. The straight tube walls became distorted after lithiation. In situ compress...
متن کاملThermal conductivity of individual multiwalled carbon nanotubes
Thermal conductivity of individual multiwalled carbon nanotubes (MWCNT) is measured using a pulsed photothermal reflectance technique. Intrinsic thermal conductivity of individual MWCNT with a diameter 150 nm and length 2 mm at room temperature is extracted to be 2586 W/mK. Individual MWCNT is surrounded by SiO2, so parallel resistor model is applied in which SiO2 supportive is treated as a con...
متن کاملRadial elasticity of multiwalled carbon nanotubes.
We report an experimental and a theoretical study of the radial elasticity of multiwalled carbon nanotubes as a function of external radius. We use atomic force microscopy and apply small indentation amplitudes in order to stay in the linear elasticity regime. The number of layers for a given tube radius is inferred from transmission electron microscopy, revealing constant ratios of external to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Carbon
سال: 2015
ISSN: 0008-6223
DOI: 10.1016/j.carbon.2014.10.009